détonation - significado y definición. Qué es détonation
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es détonation - definición

SUPERSONIC COMBUSTION OF AN EXPLOSIVE MATERIAL
Detonate; Detonations; Detonated; Detonating

Detonation (disambiguation)         
WIKIMEDIA DISAMBIGUATION PAGE
Detonation (song)
Detonation is a process of combustion in which a supersonic shock wave propagates through a body of material.
Detonate         
·vi To explode with a sudden report; as, niter detonates with sulphur.
II. Detonate ·vt To cause to explode; to cause to burn or inflame with a sudden report.
Detonation         
·noun An explosion or sudden report made by the instantaneous decomposition or combustion of unstable substances' as, the detonation of gun cotton.

Wikipedia

Detonation

Detonation (from Latin detonare  'to thunder down/forth') is a type of combustion involving a supersonic exothermic front accelerating through a medium that eventually drives a shock front propagating directly in front of it. Detonations propagate supersonically through shock waves with speeds in the range of 1 km/sec and differ from deflagrations which have subsonic flame speeds in the range of 1 m/sec.

Detonations occur in both conventional solid and liquid explosives, as well as in reactive gases. The velocity of detonation in solid and liquid explosives is much higher than that in gaseous ones, which allows the wave system to be observed with greater detail (higher resolution).

A very wide variety of fuels may occur as gases (e.g. hydrogen), droplet fogs, or dust suspensions. In addition to dioxygen, oxidants can include halogen compounds, ozone, hydrogen peroxide and oxides of nitrogen. Gaseous detonations are often associated with a mixture of fuel and oxidant in a composition somewhat below conventional flammability ratios. They happen most often in confined systems, but they sometimes occur in large vapor clouds. Other materials, such as acetylene, ozone, and hydrogen peroxide are detonable in the absence of an oxidant (or reductant). In these cases the energy released results from the rearrangement of the molecular constituents of the material.

Detonation was discovered in 1881 by four French scientists Marcellin Berthelot and Paul Marie Eugène Vieille and Ernest-François Mallard and Henry Louis Le Chatelier. The mathematical predictions of propagation were carried out first by David Chapman in 1899 and by Émile Jouguet in 1905, 1906 and 1917. The next advance in understanding detonation was made by John von Neumann and Werner Döring in the early 1940s and Yakov B. Zel'dovich and Aleksandr Solomonovich Kompaneets in the 1960s.